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Abstract

Free vibration of piezoelastic laminated cylindrical shells under a hydrostatic pressure is discussed in this paper.
From Hamilton’s principle nonlinear dynamic equations of the piezoelastic laminated cylindrical shell are derived.
Based on which, the dynamic equations of a closed piezoelastic cylindrical shell under a hydrostatic external pressure
are obtained. An analytical solution is presented for the case of free vibration of a simply supported piezoelastic
laminated cylindrical shell under a hydrostatic pressure, and the influence of fluid-structural coupling effect on the
natural frequencies of submerged cylindrical shell is discussed. Numerical results are presented to examine the factors
that influence the natural frequencies of the piezoelastic cylindrical shell under a hydrostatic pressure. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In recent years, the use of piezoelectric materials in intelligent structures attracted extensive attentions.
Due to the intrinsic direct and converse piezoelectric effects, piezoelectric materials can be effectively used
as sensors or actuators for the active shape or vibration control of structures. The design of such active
systems requires good understanding of the mechanical-electric interaction between the structures and
piezoelectric materials. Many investigations have been done on this field (Clinton et al., 1998). However,
most of these studies are based on geometrically linear theories (Tzou, 1993). Since many structures like
large lightweight space structures or thin-wall vessels can induce large deformations under large external
static or dynamic excitations, researches on the induced geometrical nonlinear effects on static and dynamic
characteristics of structures are necessary in order to design and control the structural systems effectively.

Baumhauer and Tiersten (1973) developed general piezoelectric nonlinear theory. Pai et al. (1993)
proposed a nonlinear model for a composite plate laminated with piezoelectric layers. Yu (1995) provided
large deformation equations of piezoelectric plates. Tzou and Bao (1997) presented a geometrical nonlinear

*Corresponding author. Fax: +86-21-62933021.
E-mail address: cmshen@public2.sta.net.cn (H. Li).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00008-7



7572 H. Li et al. | International Journal of Solids and Structures 38 (2001) 7571-7585

theory of a piezothermoelastic laminated shell exposed to mechanical, electric and thermal fields. Tzou and
Zhou (1995) investigated the dynamic control of a circular plate with geometrical nonlinearity. Nonlinear
piezoelectric beams were discussed by Donatus et al. (1998) and Bao et al. (1998).

Stability problem of flexible or thin-wall structures is a primary concern of researchers. However,
publication about the stability of piezoelectric structures is few. Chen and Shen (1997) studied the buckling
of piezoelectric cylindrical shells of infinite length subjected to external pressure and electric field. No re-
search on stability of finite piezoelectric cylindrical shells has been found by the authors.

In this paper, free vibration of piezoelastic laminated cylindrical shells under hydrostatic pressure is
discussed. In Section 2, nonlinear dynamic equations of the piezoelastic laminated cylindrical shell
are derived from Hamilton’s principle. Then, the dynamic equations of a closed piezoelastic cylindrical
shell under a hydrostatic external pressure are obtained in Section 3. In Section 4, an analytical solution is
presented for the case of free vibration of a simply supported piezoelastic laminated cylindrical shell under a
hydrostatic pressure, and the fluid-structural coupling effect on the natural frequencies of submerged shell
is discussed. Numerical results are presented in Section 5, and the factors that influence the natural fre-
quencies of the piezoelastic shell under hydrostatic pressure are examined.

2. Nonlinear piezoelastic laminated cylindrical shell theory

The structure studied in this article is a N layers symmetrically laminated circular cylindrical shell (Fig.
1). The curvilinear coordinate system (x;,x»,x3) shown in Fig. 1 is selected, where the x; axis is along the
axial direction, the x, axis is the rotational angle defining the circumferential direction, and the x3 axis is
along the radial direction. The surface defined by x; = 0 is set on the middle surface of the shell. R is the
radius of curvature of the x, axis on the middle surface. Therefore, the relations between cylindrical co-
ordinate system (z, 0, ) and (x;,x,,x3) are: z = xy, 0 = x,, » = x3 + R. Each shell lamina can be composed of
an orthotropic, piezoelectric or elastic material. The principle material directions are assumed to coincide
with the coordinates x;, x, and x;. The thickness of kth layer is denoted as 4, (k=1,2,...,N), the total
thickness of the shell is # = 3"} , . L denotes the length of the shell.

2.1. Constitutive relations

It is assumed that material properties are constant, and the stress and strain relations are linear. The
constitutive relationship of orthotropic piezoelectric materials can be written as follows (Tiersten, 1969):

L S

Fig. 1. Configuration of a piezoelastic laminated cylindrical shell.
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where o;, S;, D;, E; represent the stresses, strains, electric displacements, and electric fields, respectively; c;;,
e;;, &; denote the elastic stiffness constants, piezoelectric stress constants and dielectric constants, respec-
tively. In this paper, the plane stress approximation is made. Thus, while the labels for ¢;;, e;;, &; are not
changed, it is assumed they have been adjusted to accommodate the plane stress approximation in the
following discussion.

The relations between the electric fields E; (i = 1,2,3) and the electric potential ¢ in the curvilinear
coordinate system (Fig. 1) are defined by

0o 1 0¢ 0o
El=—— E,=— - Ey=——
! axl ’ ? R +X3 6x2 ’ 3 8x3 (3)
The electric potential function ¢* on the kth layer is written as follows (Mitchell and Reddy, 1995):
M
¢k(xl7x27x37t) :Zf;'k(x.%)(pjf(xhx%t) (k: 1727"'5N) (4)
=1
where M is the number of interpolation nodes, and ff(x3) (j=1,...,M) are Lagrange interpolation
functions.

2.2. Nonlinear strain—displacement relations

The nonlinear strain of the structure can be introduced by large deformations, which in turn can be
introduced mechanically and/or electrically. According to the Love—Kirchhoff thin shell assumptions, the
nonlinear deflection U;(x;,x,,x3,¢) (i = 1,2,3) in the ith direction can be expressed as (Tzou, 1993)

Ui (o1, %2, x3, 1) = uy (X1, X2, 8) + 01 (x1,x2,1)x3
UZ(x17x27x3vt) = uZ(x17x27t) + 02(}(1,)6271))63 (5)
Us (1, x2,x3, 1) = u3(x1,X2,1)

where u;(x1,x2,¢) (i = 1,2,3) is the displacement component of a point on the midplane of the shell along
the x; (i = 1,2,3) axis; 0, and 0, represent the rotations of a transverse normal at x; = 0 about the x, and
—x) axes, respectively. The laminated shell is considered to be thin, so that the transverse normal strains S;
and shear strains Sy, S5 are negligible. Thus, the rotational angles 0, and 0, for the thin laminated shell are
defined as (Tzou and Bao, 1997):

6u3 Uy 1 6u3

0, =—-=> 0p=—2—— 2 6
! axl’ 2 ()
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In general, for a thin shell, the in-plane deflections are much smaller than the transverse deflections.
Thus, the nonlinear effects due to the in-plane large deflections are usually neglected (Palazatto and Dennis,
1992), only the nonlinear strains due to the large transverse deflection u; are considered. Therefore, the
nonlinear strain—displacement relations can be written as:

S] S1 K1
S p =1 85 p+x38 K2 (7)
Ss S6 K¢

where sy, 53, ¢ are the membrane strains, and i, k,, k¢ are the bending strains. Subscripts 1, 2, 6 re-
spectively denote the two normal strains and in-plane shear strain. Detailed membrane and bending strains
are written as functions of displacements u; (i = 1,2, 3)

aul 1 6ug 2
=—+4- — 8
5 6x1+2<6x1> (8a)
R R TR
Sz—ﬁa—ﬁﬁz(mm) (8)

- 1 6141 auz 1 6u3 6143
56 = R aX2 + le +R ze 6)61 (SC)

62u3 auz 1 GZU3 auz 2 62u3

T “TRe Rad T Rew Ranon

2.3. Hamilton’s principle and nonlinear system equations

The system equations and boundary conditions of the piezoelastic shell can be derived from Hamilton’s
principle:

5/” (T — T)d = 0 9)

where T is the kinetic energy: 7 = [, 1pU,U;dV; I1 is the total potential energy: I1 = [, A(S;, E;)dV —
[,[t;U; — 0;¢]d4; 1 is the electric enthalpy: 7 = 1{S} [c]{S} — J{E} [{E} — {E} [e]{S}. p is the mass
density; ¢; is the surface traction in the x; direction, Q; is the surface electric charge; U; and U; are the
displacement and velocity; V' and A are the volume and surface of the piezoelastic shell continuum, re-
spectively. Considering the N layers piezoelastic shell discussed in this paper, Hamilton’s equation can be
rewritten as follows:

/t[)[I kzh—[;/m %Pké (i(Uj)2> dvdr — /;Ot] kz}f;/yk ({a},fé{S}k — {D};é{E},‘) dv dr

j=1
n N
+/t0 ;/Ak(fﬁlf_/—Qié(i))dAdt:O (10)

Note that membrane force resultants N; (i = 1,2,6) and M; (i = 1,2,6) can be written as:
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where superscript e represents the component induced by the electric field. The laminate stiffness 4;;,
B;; (i,j=1,2,6) are defined as

N N
E Cl} ‘x3k x3k—l)’ 1” E CU x3k _xﬁu 1)
k=1 k:

where x;, and x3,, denote the coordinate values in x3 axis of the outer and inner surface of the kth layer,
respectively. It is assumed that in-plane electric fields £, and E, are zero in the thin piezoelastic shell
laminate, and only the transverse electric field E; is considered in the analysis. Thus, the resultants due to
the piezoelectric effect can be written as

N M N M
Ne— 3o (Zn,-kqo,k), N =3, (zn,.kwjf) N =0 1)
k=1 =1 k=1 =1

N M N M
= Zegl (Zﬁjk@f)a M5 = ZeI;z (Zﬁ/k@f) ) Mg =0 (14)
j=1 Jj=1

k=1 k=1

where

X3, df}k X3, f/k -
ij:/x adxm ﬁij/x dx dx; G=12,....M; k=1,2,...,N)

3k-1 3k-1

Considering Eq. (5), the inertia force terms can be rewritten as

h2 h/2
| ntdn= [ g+ x0)de = pihiy (=1.2) (15)
—h/2 —h/2

h/2 B h/2 .
[ pbmdn= [ iy vx0pmdn =6, (1=12) (16)
—h)2 )

h2 /2
/ pkU3 dX3 = / pkl'/'l3 dX3 = pAhM3 (17)
—h/2 —h/2

where p, = (S0, po/u)/h is defined as a weight average density for the multi-layered shell and B =
%Zszl pe(x3, — x5, ). The effect of rotatory inertia B0, can be neglected in the thin laminated shells without
large rotational effect. Therefore, one can derive the nonlinear piezoelastic shell equations and boundary
conditions from Eq. (10).

oy, Mo
le RaX2 o
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=1
where
F = aa—];/lll + % ) 2= % + 66_1;/[16

Egs. (18)—(20) coincide with Egs. (23)—(25) (Tzou and Bao, 1997) when R} = 0o, R, = R, A, =1, A, = R.
All terms inside the brace of Eq. (20) are contributed by geometric nonlinear effect. Egs. (18)—(20) look like
equations for a elastic shell. However, from Egs. (11) and (12), it can be seen that the force and moment
resultants are defined by mechanical and electric effects, which are more complicated than the conventional
elastic expressions. Admissible mechanical boundary conditions are:

(a) Boundary surfaces which are normal to x| axis:

M
0 0 0 0 0 6 0
Ny oru), M or0], Ng-+ R O %

aMO 6u3 N6 au3 0
FO 76 et 6 FHS 0
! +R6x2 |: l@xl + R axZ:| ot “3

(b) Boundary surfaces which are normal to x, axis:

Ny oruS, MY ord, N?oru
6M0 N2 6u3 6u3 0

B4+ —S+ | = —+Ng—| orul

2 6x1 R GXQ 6 6x1 3

Superscript 0 denotes the given physical boundary condition.

For sensor purposes, there exist two conditions for piezoelectric laminae: one is the close circuit (Lee,
1990), and the other is the open circuit (Tzou et al., 1993). For the piezoelectric layer in the close circuit
condition, the potentials on the surfaces of the laminae are specified. In this paper, the piezoelectric layer is
in the open circuit condition, the charge equation is

T3 dfk
D3Kjdx3 =0 (21)

R 3

Dy =

Electric boundary conditions on the transverse surface S;, in the open circuit condition are
Ds,+03 =0 (k=0,1,2,...,N) (22)

ng is the external charge density on the kth surface.
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3. Dynamic equations of closed piezoelastic cylindrical shells under hydrostatic external pressure

The dynamic characteristics of a closed piezoelastic cylindrical shell under hydrostatic pressure are
discussed in this section. It is assumed that the shell is subjected to a hydrostatic external pressure ¢ and a
radial dynamic pressure P;(x;,x,,¢) on its outer surface. Assuming (U, Uy, Us) are the displacements of
the shell under the hydrostatic pressure, (U, U,, Us) are small deflections deviating from (U, Uy, Usy) due
to the disturbing force P (xi,x,,). Hence, the displacements of the shell can be expressed as:

U= Uo+ T, (i=1,2,3) (23)
Also, force and moment resultants can be expressed as
Ni — No+N;, M; — My + M; (i=1,2,6) (24)
Therefore, substituting Eqgs. (23) and (24) into Eqgs. (18)—(20), and considering Ny, = (—gR/2),
Nyy = —qR, Ngyp = 0 at the same time, after eliminating all terms denoted by subscript 0 and omitting the
high order terms denoted by superscript -~ and the terms including 0Us/0x; or 0Usy/0x,, the dynamic

equations of the piezoelastic circular cylindrical shell under hydrostatic external pressure are written
as:

ON, ONs

— = p,hii 25
6x1 + R a)CZ Pt ( )
ON, ONg 1 [/0M, 0M; -
I 2 ) =ph 26
ROx Ox + R (Ra)Q Ox; ) psltth ( )
0 GMI aM() 1 0 aﬂz aﬁé Nz qR 62ﬁ3 q 6253 .
— | =— - — — |- — == —P =ph 27
ox, ( Ox; +Rax2> R Ox, <R6x2+ Ox; ) R 2 ax% R O % 1= P (27)
Similarly, the electric displacement equilibrium equation (21) can be rewritten as
D=0 (j=1,2,....M, k=1,2,...,N) (28)
Also neglecting the terms including 0Usy/0x; and 0Usy/0x, from Eq. (8), we obtain
_ o 1w us _ 10w owm
_dm % —— 1, 29
51 6x1 ’ 52 R axz R ’ S R 6x2 + 6x1 ( a)
%u; ouy, 1 us du, 2
= __ YU o = - -3 X = - - 29b
K o}’ 2 R*0x, R> Ox3° K6 ROx; R 0x;0x (29b)

Substituting Eqgs. (13), (14) and (29) into Eqgs. (11) and (12) yields
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(30)

M¢=B =
6= 66<RaX1 R 6x1 6x2

Because our concern is the disturbing solutions of the shell under hydrostatic pressure, for simplicity,
superscript ‘- is omitted from the disturbing variables in following discussions, i.e. #; is expressed by u;.
Substituting Eq. (30) into Egs. (25)—(27), the equations of motion in terms of displacements and potentials
can be derived to be:

621,{1 82u1 62u2 8u3 Ui A M a(Pk
A + Agg—— + (4 A A L —L | = i 1
15 T Ass prgyr + (i +4se) parme + A e ot ;eﬂ ;’7«/" o, ) T Pl (31)
6214] Azz Bzz 62u2 366 6 175} 6u3 631/13
(i +Ase) a5, <R2 +_>W+ ( “ TR ) o T e PR
s (32)
- (BIZ + 2366)R26 26 R2 Z €3 <Zﬂjk ax ) Z €3 (Z’/’jk ) = pvhuz
Ouy Ouy Pu, u, *us
_A12R6x1 *R2ax, + (286 + BIZ)R2 0xj Ox, B R*0x3 A22 ~Buga oxt ~ 2B + 28y)

*us *us  qR uy 0%us 1 & M
- B — e =P — = k ok
T i T DO ;"”‘ v
N M 62 (p]f 1 N M 62 (plg )
+ Zegl (Zﬁjk o2 2, > + ﬁzegz (Zﬁ/k 3 2j = p,hii (33)
k=1 j=1 X k=1 j=1 X2

The electric displacement equilibrium equation expressed by displacements and potentials can be ob-
tained when Egs. (29a), (29b) and (2) are substituted into Eq. (28):

- ik Ou x3\ Ou u %u o%u
k K 1 k 3 2 kY3 K 3 k 3
D; —lg | {6316_)c1+e32(1 +§)R6 te g x3(e31 o +€32R26x§)

_m<zdf’ )} Y 4 =0 (34)
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4. Undamped vibration of a simply supported cylindrical shell

To obtain meaningful solutions, a laminated circular cylindrical shell with simply supported boundary
conditions is studied. The composite piezoelastic laminated shell is a hybrid laminate with two piezoelectric
layers added symmetrically to a symmetrically laminated elastic shell. The simply supported boundary
conditions are:

%u

x1 =0,L, N1:u2:u3:§%320 (35)
Using the method analogous to Mitchell and Reddy (1995), each piezoelectric layer is regarded as two

mathematical layers with equal thickness, whose electric potential can be modeled using linear Lagrange

elements. For the free vibration problem of the shell, the electric potentials can be written as:

P} =0, @o=0i=¢, ¢3=0

01=0,  ¢3=0i=0o  @3=0
where, superscripts ‘1’ and ‘2’ mean the inner and outer parts of the piezoelectric layer on the inner surface
of the shell, respectively; superscripts 3” and ‘4’ mean the inner and outer parts of the piezoelectric layer on
the outer surface of the shell, respectively. The subscript ‘1’ and 2’ denote the inner and outer surfaces of
the corresponding layer, respectively.
The solutions satisfying the boundary conditions (35) have the following expressions:

iot

Uy = Upy COS(Z,x1) COS (nx;)e

Uy = Upy SiN (2,,X1) sin (nx,)e'

Us = Wy, SIN (2,X1) cOS (11x;)e™™” (36)

it

O1 = @1 SIN (zpX1) COS (nx7)€

6 = Py SN (Zpx1) COS (11X
where o is the natural frequency of the cylindrical shell, z,, = mn/L, m and 2n indicate, respectively, the
number of half waves in the axial and circumferential directions.

Also, the radial pressure P, can be expressed as

Py = Py, Sin (2,,x1) cos (nx;)e” (37)
Substituting Egs. (36) and (37) into Egs. (31)-(34) yields:
([H] = qUD{V} = D’ MV} +{T} (38)
in which

{V} = {umm Umns Win s (pImna (pOmn}T? {T} = {07 07 - Pl mns 07 O}T

and [H] is a symmetric matrix, whose elements are given by

n? A+ A4 Az,
H11:A112i1+A66ﬁ7 an-(%)zmn, Hypz = — 1; , Hyy=H;s =0,

B(,é ) B22 n2 Bzzl’l3 Azzl’l nzi
Hy, = (Aé() +F>Z’” + <A22 +F) ik Hy; = i TRt (Bi2 + zBéé)Fa
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e3n
Hyy = (Bar + B1a), Hys = R

R (B2 + Bua)s

2.2 4
n-z, Bzzn A22
Hy3 = Bz, + 2(B1z + 2Bgs) 2 T TR

e32n2 6321’12

Hiy = (o + B1o) <e3lzi + R >7 His = (B + Pia) <€312,2n + RZ)’

22 11 22 11
Hy = —exs (07" + 04", Hys =0, Hss = —¢&33 (03" + o)
where

X k
TR drf d_]
ko dx; dx dxs

P

[J] and [M] are diagonal matrices whose elements are

R n? )
J33 :Tm+f’ Ji=0 (i=1,2,4,5), My =My =M =ph, My =Mss =0

It can be seen that, from the elements of matrix [H], the dynamic characteristics of a piezoelastic lami-
nated shell is determined not only by the stiffness and mass of the shell but also by the piezoelectric and
dielectric coefficients of the piezoelectric layers.

When the hydrostatic external pressure exceeds certain value, the shell may lose stability. Therefore, the
investigation of the free vibration of the cylindrical shell under hydrostatic pressure is meaningful only
when the hydrostatic pressure is below the critical hydrostatic pressure ¢.;. The critical hydrostatic pressure
g.r can be obtained when the determinant of the coefficient matrix of the left-hand side of Eq. (38) vanishes,
Le. |[H] = qu[J]| = 0.

4.1. Free vibration of a piezoelastic cylindrical shell under hydrostatic pressure

Neglecting the coupling effect of the fluid and structure, one can obtain the frequency equation as
follows with P;,, removed from Eq. (38):

([H] = squD{V} = ?[M{V'} (39)

in which, s denotes the ratio of hydrostatic pressure ¢ to critical pressure ¢... From Eq. (39), the effect of
hydrostatic pressure on the natural frequencies of the circular cylindrical shell can be obtained.

4.2. Free vibration of a submerged cylindrical shell

Due to the coupling effect between the fluid medium and the shell, the vibration of submerged shells are
different from the vibration of shells in vacuum. The free vibration of a cylindrical shell submerged in an
infinite incompressible fluid medium is considered in this paper. The basic equation of the dynamic pressure
P(z,0,7,¢) in cylindrical coordinates (z, 0, r) is given by:

62_P 16<6P> 10°P

= il e) TR =0 (40)

The boundary conditions on the interaction surface of the fluid and the shell (» = R) are:
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oP %u,
o P
where p; is the fluid density, and u, and o, are the radial displacement and stress components of the shell on
the interaction surface, respectively. Therefore, u, = u3 and P, (x,x2,t) = P(z,0,r,t)|,_z-
Dynamic pressure P(z, 0,r,¢) can be expanded in the following form:

g, = —P (41)

P(z,0,r,t) = P,,X(r) sin(z,z) cos (n0)e"" (42)
Substituting Eq. (42) into Eq. (40) yields

X  1dx n’

W+;$—<z,2n+r—2>X=0 (43)

Taking account of the non-reflection condition of P at » = oo, the solution of Eq. (43) is:
X(r) =K, (vr) (44)

where v = z,,, and K, (r) is the second kind of Bessel function of order ».
From Egs. (41) and (36), we can obtain

X(r) . .
— 2. 2\ iot
P(z,0,r,t) = w PWon ®) sin(z,z) cos (nf)e (45)
where
' dX(r)
X (r) =
(r) dr
Comparing Eq. (45) with Eq. (37), we obtain
X(R)
_ 2
len = hWmnX,(R) (46)

Substituting Eq. (46) into Eq. (38) yields the frequency equation of the submerged piezoelastic shell as

([H] = sqecUD{V} = 0 (M] + [M)){V'} (47)
where [M,] is a diagonal matrix, whose elements are
__, X®) —0 (i—
Ma33__pfm7 Maii_o (l_ 1727475)

Comparing Eq. (47) with Eq. (39), it can be seen that the effect of the fluid—structural coupling is in-
cluded in the matrix [M,].

5. Numerical examples

Numerical examples are shown in this section. The hybrid laminate is a six-layer hybrid laminate with
two piezoelastic layers of the same piezoelectric material integrated symmetrically to a four-layer graphite/
epoxy substrate, which is symmetric cross-ply with ply angles [0°/90°],, and ply thickness #,. Let ¢, denote
the piezoelastic layer thickness. It is supposed that the length L and the radius R of the cylindrical shell are
10.0 and 1.0 m, respectively. Material properties of graphite/epoxy are

El = 181.0 GPa, E2 = E3 =10.3 GPa, G12 = G13 =717 GPa, G23 =3.87 GPa7
Vi = Vi3 = 028, Vo3 = 033, p = 1580.0 kg/mz
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Table 1
Elastic, piezoelectric and dielectric properties of piezoelectric materials
Property PVDF PZT
Ci; (GPa) 3.61 148
Cx 3.13 148
Cs; 1.63 131
Cia 1.61 76.2
Ci3 1.42 74.2
Cy 1.31 74.2
Cys 0.55 254
Css 0.59 254
Cos 0.69 359
€31 (C/m?) 32.075x 1073 -2.1
€3 —4.07x 1073 =2.1
es3 —21.19 x 1073 9.5
ers —15.93x 1073 9.2
e —12.65x 1073 9.2
811/803 6.1 460
822/803 7.5 460
€33 /Soa 6.7 235
p (kg/m®) 1800 7600

T =8.85 x 10712 C?/Nm?.

The material properties of piezoelectric laminae are listed in Table 1. The density of the fluid p; is 1000.0
kg/m?.

Because the lowest natural frequency of the structure is more important than other higher ones in en-
gineering, the frequencies calculated in this section are the lowest frequencies of the shell. The lowest
natural frequencies of the piezoelastic cylindrical shell in vacuum and in a fluid under different hydrostatic
external pressures are listed in Table 2, where PVDF are chosen for the piezoelastic layers in calculations. It
can be seen that, for a given vibration mode, the natural frequencies of the shell decrease when the hy-
drostatic external pressure increases. When the hydrostatic pressure reaches the critical pressure, the shell
will lose its stability. Also, the frequencies of a submerged shell are less than half of those of the shell in
vacuum under the same hydrostatic pressure, which means that the fluid—structural coupling effect has great
impact on the frequencies of submerged shells.

Fig. 2(a) and (b) give the curves of critical hydrostatic pressure and the frequency of the laminated
piezoelastic cylindrical shell versus various values of m and n, respectively, where the piezoelectric pairs are
PVDF. The results of the Fig. 2 were obtained with #, = 0.01 m and £, = 0.001 m. When the total thickness
of the shell is set constant, i.e. # = 0.042 m, the critical hydrostatic pressure and the frequency of the
laminated piezoelastic cylindrical shell for different ratios 2¢,/h are shown in Fig. 3 for PVDF pairs and Fig.
4 for PZT pairs. In Figs. 2-4(b), the solid lines represent the cases without considering the fluid—structural
coupling effect and the dashed lines represent the cases considering the fluid—structural coupling effect.

As indicated in Fig. 2, for a given axial half-waves number m, ¢, and natural frequency decrease first and
rise later with the increase of the circumferential wave number. For a given circumferential wave number n,
g and natural frequency increase with the increase of the axial half-waves number m.

If the thickness of the shell is set constant, when the PVDF laminae become thicker, the stiffness of the
shell reduces and the critical hydrostatic pressure reduces. However, because the density of PVDF is close
to that of graphite/epoxy, when the piezoelectric thickness ratio increases, the mass of the shell changes
little and the natural frequencies of the shell decrease (see Fig. 3). The results are different for the laminae
containing PZT laminae. PZT is mechanically stronger than graphite/epoxy, and the stiffness of the shell
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Comparison of the natural frequencies of the piezoelastic cylindrical shell in vacuum and in a fluid under different hydrostatic external

pressures (PVDF pairs)

ty/ty Mode Natural frequency o (rad/s) Ger (10°
_ _ _ _ _ N/m?)
m n s=0 s=0.2 s=04 s=0.6 s=0.8
10 In vacuum 1 3 393.7395 352.1725 304.9914 249.0252 176.0880 1.2728
In a fluid 168.6531 150.8479 130.6381 106.6656 75.4240
In vacuum 3 4 826.2558 739.0295 640.0217 522.5782 369.5205 2.9499
In a fluid 394.0439 352.4437 305.2252 249.2154 176.2220
1 In vacuum 1 3 245.3848 219.4792 190.0750 155.1959 109.7403 0.5139
In a fluid 106.7760 95.5034 82.7084 67.5311 47.7517
In vacuum 3 4 536.8807 480.2023 415.8687 339.5565 240.1035 1.2947
In a fluid 259.8825 232.4460 201.3042 164.3642 116.2231
0.5 In vacuum 1 3 179.5319 160.5784 139.0652 113.5464 80.2895 0.2812
In a fluid 78.8169 70.4960 61.0514 49.8482 35.2480
In vacuum 3 4 407.3876 364.3795 315.5627 257.6565 182.1911 0.7619
In a fluid 198.8598 177.8656 154.0362 125.7700 88.9329
(b)
5x10°
- m=
—a—m=5
—e—m=9

cr

g (N/m’)

 (rad/s )

Fig. 2. (a) The critical hydrostatic pressure g..; (b) the natural frequency of the piezoelastic cylindrical shell without considering

hydrostatic pressure for various values of m and n (¢, = 0.01 m and ¢, = 0.001 m, PVDF pairs).

increases when the PZT layers become thicker. Hence, the critical hydrostatic pressure increases. Moreover,
because the density of PZT is greater than that of graphite/epoxy, as the piezoelectric thickness ratio in-
creases, the effect of mass increase is greater than that of stiffness increase. Hence, the natural frequencies
increase first and then decrease (see Fig. 4).
The natural frequency of the shell is lower when the fluid—structural coupling effect is considered, as
indicated in Figs. 2-4(b). It means that the fluid—structural coupling effect is similar to adding mass.
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Fig. 3. (a) The critical hydrostatic pressure ¢.; (b) the natural frequency of the piezoelastic cylindrical shell versus piezoelectric
thickness ratio (2 = 0.042 m, PVDF pairs).
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Fig. 4. (a) The critical hydrostatic pressure g.; (b) the natural frequency of the piezoelastic cylindrical shell versus piezoelectric
thickness ratio (& = 0.042 m, PZT pairs).

6. Conclusion

Free vibration of piezoelastic laminated cylindrical shells under a hydrostatic pressure is investigated in
this paper. The nonlinear dynamic equations of a closed piezoelastic cylindrical shell under a hydrostatic
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external pressure are obtained. For the case of simply supported piezoelastic laminated cylindrical shell
under a hydrostatic pressure, solutions of the critical hydrostatic pressure and the natural frequencies of the
shell in vacuum and in a fluid are presented. The results show that: (1) the critical hydrostatic pressure and
the natural frequencies of piezoelastic laminated shells are determined not only by the stiffness and mass of
the structures, but also by the piezoelectric and dielectric constants of piezoelectric layers; (2) the natural
frequencies of the piezoelastic cylindrical shell decrease with the increase of the hydrostatic pressure; (3) the
fluid-structural coupling effect is significant to natural frequencies of submerged shells, which is similar to
adding mass.
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